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Abstract

The optimal dispatch of Integrated Energy System (IES)
plays a crucial role in achieving the objectives of multi-
energy complementarity, energy conservation, and emission
reduction. In recent years, with the development of artifi-
cial intelligence technology, some researchers have started to
leverage the exploratory capabilities of Deep Reinforcement
Learning (DRL) to address the optimization challenge faced
by energy systems. Due to the expression of the system state
as a vector and its subsequent use for training purposes, the
intrinsic connection between nodes within the system is disre-
garded. As a result, these approaches inherently possess lim-
itations in terms of training efficiency and exploration abil-
ity. We proposes a DRL model based on Distributional Soft
Actor-Critic (DSAC) of Graph Neural Network (GNN) archi-
tecture, serving as an alternative to Multi-Layer Perceptron
(MLP) architecture. More effective exploration and learning
can be achieved by modeling the IES as graph structure data
and feeding it into the model. Numerical simulations and
comparative experiments confirm the method’s advantages in
terms of training efficiency and optimization results.

Introduction
The optimal dispatch of Integrated Energy Systems (IES)
in Energy Internet is one of the core issues in multi-energy
flow analysis, and it plays an important role in energy con-
servation, emission reduction, and the full utilization of en-
ergy resources (Li et al. 2020). Currently, research in this
field mainly focuses on optimal power flow solutions in
Electricity-Heat or Electricity-Gas energy systems (Tang
et al. 2020; Ge et al. 2020), and in recent years, there
have been increasing efforts in modeling and solving the
Electricity-Heat-Gas systems (Yang et al. 2020). However,
most of these solution approaches are centered around ap-
proximate or nonlinear solutions, inevitably facing chal-
lenges such as high algorithm complexity and the need to re-
solve the system state changes, making it difficult to achieve
fast response in large-scale systems and unable to guarantee
the attainment of global optimization. Additionally, the ran-
domness of power output from new energy power stations
has brought new difficulties to the optimization problem (Li
et al. 2021). How to fully utilize new energy to reduce the
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Figure 1: The simple power grid comprises 6 busbars, a gen-
erator, wind-power station and loads. Additionally, this sys-
tem contains valuable topological information. When con-
sidering the busbars as nodes and the transmission lines as
edges, we can easily model the power gird as a graph.

use of traditional energy, achieve cost reduction, energy con-
servation, peak shaving, and valley filling in power grid op-
eration has become an urgent problem that needs to be ad-
dressed (Zhou, Liu, and Liu 2014).

In recent years, Reinforcement Learning (RL) has made
remarkable progress in solving combinatorial optimization
problems (Mazyavkina et al. 2021), and has been validated
in the optimal dispatch of Electricity-Heat integrated energy
systems (Liu et al. 2021; Yang, Huang, and Chen 2021) and
Electricity-Gas integrated energy systems (Qiao et al. 2021).
However, these methods directly input the system state rep-
resented as a vector for training, ignoring the topological
connectivity structure of the system, which inevitably results
in the limitation of missing hidden physical correlations.
Graph Neural Network (GNN), as a popular research area re-
cently, can effectively utilize the topological information of
systems to depict complex nonlinear relationships between
nodes (Wu et al. 2021). By utilizing adjacency matrix to de-
pict the connectivity relationships between nodes and realize
the information propagation between nodes, GNN has ef-
fectively explored the complex non-Euclidean relationships



between nodes. In reactive power optimization problems
in power systems, GNN has achieved better accuracy and
robustness compared to traditional Multi-Layer Perceptron
(MLP) (Liao et al. 2021).

For the optimal dispatch problem of IES that include
new energy power stations, we proposes a Deep Reinforce-
ment Learning (DRL) model based on GNN, which replaces
the traditional fully connected neural network architecture.
By modeling the Electricity-Heat IES as a graph-structured
dataset, this model achieves more effective exploration and
learning. The main contributions of this paper are as follows:

• We propose designing a GNN based on the physical
topology of the IES. This approach allows us to fully ex-
plore potential links and correlations.

• We propose a novel RL model based on GNN and Distri-
butional Soft Actor-Critic (DSAC). Our model achieves
superior performance compared to existing RL-based so-
lutions for optimal dispatch problems.

• We comprehensively compare the trend of Energy Inter-
net metrics in the arithmetic example and analyze the
steady-state factors of IES.

Related Work
Deep Reinforcement Learning. DRL are mainly divided
into two categories: value-based algorithms (Liu, Gao, and
Luo 2019) and policy gradient algorithms (Liu et al. 2018).
Deep Q-Network (DQN), uses the experience playback
mechanism to store the experience data of the intelligent
body interacting with the environment online into the experi-
ence pool, and randomly samples the data in the experience
pool in small batches during training to break the correla-
tion between the data (Mnih et al. 2013). While the policy
gradient algorithm directly employs the policy network to
search for actions, specifically suitable for continuous action
scenarios, the Deep Deterministic Policy Gradient (DDPG)
adopts a deterministic approach to sampling actions to fur-
ther enhance the generality of the algorithm (Lillicrap et al.
2015). In recent years, there has been significant attention
given to the Actor-Critic (AC) structure, which combines
both value-based algorithms and policy gradient algorithms.
In this structure, the actor selects actions using the strategy
gradient method, and the value function gives the score. The
Soft Actor-Critic (SAC) algorithm adds the idea of entropy
to the objective function (Haarnoja et al. 2018).

Graph Neural Networks. Graph Neural Network (GNN)
aiming to extract and discover patterns within graph, which
fulfills the requirements of graph representation learning
tasks, including clustering, classification, prediction, gener-
ation, and more. The origins of GNN can be traced back
to as early as 2005, (Gori, Monfardini, and Scarselli 2005)
was first propose the concept of GNN, which use Recurrent
Neural Network (RNN) to deal with undirected graphs, di-
rected graphs and cyclic graphs. Afterwards, the GNN algo-
rithms of this model were further inherited and enhanced
(Micheli 2009). Afterwords, (Bruna et al. 2013) suggests
employing Convolutional Neural Network (CNN) on graph.
The Graph Convolutional Network (GCN) is introduced by
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Figure 2: The architecture of DSAC. The Experience Buffer,
Actor-Critics, and Learners are distributed across multiple
workers, and Parameter communication between the differ-
ent neural networks is asynchronous.

cleverly adapting the convolution operator. GCN realizes
the translation invariance, local perception and weight shar-
ing of CNN on graphs (Bronstein et al. 2017). In contrast
to GCN, which equally aggregates neighbor information,
Graph Attention Networks (GAT) incorporates an attention
mechanism to learn the varying importance of each neighbor
(Veličković et al. 2017).

Integrated Energy Systems. Current research on The op-
timal dispatch of IES is roughly divided into three cate-
gories: the first category of research solely focuses on spe-
cific regions, which does not consider overall planning of
multi-energy networks (Salimi et al. 2015); the second cate-
gory considers not only various regions, but also the overall
planning of multi-energy networks, which is typically em-
ployed in the model of direct current within the grid. (Huang
et al. 2016); The third category can be summarized as the
study of joint optimal problems of power grid, power supply
and gas system, which focuses on the coupling of power grid
and gas system.The demand side only considers the electric-
ity and gas loads (Chaudry et al. 2014). Additionally, there
are studies that utilize relaxation algorithms or linearization
methods (Qiu et al. 2015) to simplify the optimal model for
the gas system.

Proposed Solution
Distributional soft actor-critic (DSAC) algorithm, shown in
Figure 2, is an off-policy RL method for continuous control
setting, to improve the policy performance by mitigating Q-
value overestimations (Duan et al. 2021). Considering the
properties of IES is naturally a graph, we propose the DSAC
algorithm that combines the GNN-based actor strategy.

Problem Formulation
An Electric-Heat-Gas Integrated Energy System (IES), in-
cluding Power System, Thermal System, Natural Gas Sys-
tem and Coupling System, can be denoted as a graph G =
{V, E}, where V is the set of nodes and E is the set of edges.

State Space. For each system, a portion of its state space
(i.e., node features and edge features) needs to be obtained
from the power equations.



Power System State Space. For nodes Velec ⊂ V and edges
Eelec ⊂ E in the power system. For each node, its fea-
ture velec

i = [Pi,t0 , Pi,t1 , . . . , Pi,T ] ∈ RT is denoted as the
electrical load Pi from t0 to T . For each edge, its feature
eelec
ij = [Gij , Bij ] ∈ R2 is denoted as the concatenate of the

conductance Gij between node i and node j and the suscep-
tance Bij between node i and node j.

Thermal System State Space. For nodes Vheat ⊂ V and
edges Eheat ⊂ E in the thermal system. For each node, its
feature vheat

i = [Hi,t0 , Hi,t1 , . . . ,Hi,T ] ∈ RT is denoted as
the heat load Hi from t0 to T . For each edge, its feature
eheat
ij =

[
Lheat
ij ,mij

]
∈ R2 is denoted as the concatenate of

the length Lheat
ij of branch of pipeline ij and the mass flow

rate mij between node i and node j.
Natural Gas System State Space. For nodes Vgas ⊂ V and

edges Egas ⊂ E in the natural gas system. For each node,
its feature vgas

i = [fi,t0 , fi,t1 , . . . , fi,T ] ∈ RT is denoted
as the gas load fi from t0 to T . For each edge, its feature
egas
ij =

[
Lgas
ij , κij

]
∈ R2 is denoted as the concatenate of the

the length Lgas
ij of pipeline ij and the pipeline constant κij .

Coupling System. In this paper, combined heat and power
generation (CHP) is considered to meet the load demand of
the three systems. The state space of CHP can be represented
by the following linear programming:

min{PCHP
min − α3H

CHP, α1 + α2H
CHP

≤ PCHP ≤ PCHP
max − α3H

CHP}
(1)

where PCHP and HCHP represent the electrical output and
thermal output of the CHP, while PCHP

min and PCHP
max indicate

the lower and upper limits of the electrical output. Similarly,
HCHP

min and HCHP
max represent the lower and upper limits of the

thermal output. Additionally, α1, α2, and α3 are coefficients
used for calculating the polygon area.

Action Space. Action space A has concrete physical sig-
nificance. A = {PG, PCHP, HCHP, αW, f}, including the ac-
tive power output of thermal power stations PG, the electri-
cal and thermal power output of CHP PCHP and HCHP, the
wind power absorption coefficient αW, and the gas supply
volume of natural gas supply stations f .

Reward Function. The objective of the optimal dispatch
task in IES is to minimize operating costs while ensuring
constraint satisfaction.

Operating Costs. Operating costs include thermal power
station operating costs, CHP operating costs and natural gas
costs. First costs are calculated as follows:

F1 =

T∑
t=t0

|NP|∑
i=1

(α2P
2
i,t + α1Pi,t + α0) (2)

where T represents the total operating time. |NP| de-
notes the quantity of thermal power stations. Pi,t signifies
the active output of thermal power station i during time
t. α0, α1, α2 represents the parameters of the consumption
characteristic curve for the thermal power unit.

CHP operating costs are calculated as follows:

F2 =

T∑
t=t0

|NCHP|∑
i=1

(µ0 + µ1H
CHP
i,t + µ2P

CHP
i,t +

µ3(H
CHP
i,t )2 + µ4(P

CHP
i,t )2 + µ5H

CHP
i,t PCHP

i,t )

(3)

where |NCHP| represents the quantity of CHP. PCHP,
HCHP signify the electrical output and heat output, respec-
tively, of the CHP during time t. µ represents the parameters
of the consumption characteristic curve for the CHP.

natural gas costs are calculated as follows:

F3 =

T∑
t=1

|NG|∑
i=1

Cgasfi,t (4)

where |NG| represents the quantity of gas supply stations.
Cgas denotes the price per unit of natural gas. fi,t signifies
the volume of gas supplied of each station during time t.

Physical Constraints. The stable state of IES requires
compliance with safety constraints, including node voltage,
line transmission power and so on. In addition, the IES needs
to satisfy the ramping constraints, including electric power
ramping and thermal ramping.

r = −(F1 + F2 + F3 +

9∑
i=1

λi| · |) (5)

where λi signifies the penalty factor, while | · | denotes the
safety constraints and ramping constraints. To ensure that
the training results satisfy the constraints, generally set a
larger penalty factor. When the constraints are satisfied, the
penalty term equals 0.

In conclusion, the reward function encompasses the ex-
penses associated with system operation as well as the penal-
ties incurred for violation of constraints.

Distributional Soft Actor-Critic Algorithm
DSAC ensures the randomness of strategy learning and ex-
pands the exploration range as much as possible to prevent
getting stuck in a local optimal solution. The goals of the
DSAC algorithm are as follows:

Gπ = E
(si≥t,ai≥t)∼ρπ

ri≥t∼R(·|si,ai)

[ ∞∑
i=t

γi−t[ri + αH(π(·|st))

]
(6)

where H(π(·|s)) = Ea∼π(·|s)[− log π(a|s)] represents the
entropy value of the strategy π(a|s) in the state s.

To evaluate the strategy π , define a soft Q-value function
and use the Bellman operator Tπ:

TπQπ (s, a) =E[r] + γ E[Qπ
(
st+1, at+1

)
− α log π

(
at+1

∣∣st+1

)
]

(7)

The objective of policy improvement is to identify a new
policy πnew that outperforms the current policy, thus yield-
ing a higher expectation of return.
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Figure 3: The structure of Learner and Actor-Critic. The return distribution and policy are approximated using two neural
networks: the Actor and the Critic. DSAC initially updates the distributional value using samples collected from the buffer.
Subsequently, the output of the critic network guides the update of the actor network.

πnew = argmax
π

Gπ

= argmax
π

E[Qπold(s, a)− α log π(a|s)]
(8)

To prevent the overestimation of Q-values during the
learning process and mitigate any potential negative impacts
on policy performance, this algorithm no longer directly
computes the expected value Qπ(s, a) of the soft return
Zπ(s, a). Instead, it uses Zπ(s, a). : Zπ(Zπ(s, a)|s, a) :
S × A → P(Zπ(s, a)). The approach is referred to as the
value distribution function, which utilizes the Bellman oper-
ator as a basis for learning soft returns.

Tπ
DZ

π(s, a)
D
=r + γ(Zπ(st+1, at+1)

− α log π(at+1|st+1)
(9)

where D
= indicates that the random variables on the left

and right ends have the same probability distribution. As-
suming Tπ

DZπ(s, a) follows Tπ
DZ

π(·|s, a), the parameters
are updated by minimizing the distribution distance.

Znew = argmin
Z

E
(s,a)∼ρπ

[d(Tπ
DZold(·|s, a),Z(·|s, a))] (10)

where d is a distance function that measures two distribu-
tions, and KL divergence is commonly used.

GNN-based Actor Strategy
Compared with MLP that does not use topological informa-
tion, GNN can transfers information between nodes based
on their edges. We developed a GNN-based DSAC actor,
leveraging the topological information of IES, as illustrated
in the Figure 3. In order to assign different importance to
different neighbors, we employs GAT as actor strategy:

hk
i = αiiWhk−1

i +
∑

j∈N (i)

αijWhk−1
j (11)

where hk
i represents the vector representation of node i in

the k-th layer of the neural network. W represents the neu-
ral network parameter matrix used to linearly transform the

node characteristics. N (i) represents the neighboring nodes
of node i, and αij is the attention coefficient.

αij =
exp(GELU(aT [Whi ∥ Whj ∥ Weeij ]))∑

k∈N (i)∪{i}
exp(GELU(aT [Whi ∥ Whk ∥ Veeik]))

(12)
The vector a in the formula represents the parameter vec-

tor of the attention network. We is the parameter matrix
used for linear transformation of edge information. eij rep-
resents the feature vector of the edge. GELU(·) denotes the
activation function. ∥ serves as the vector connector.

In conclusion, incorporating GAT as the actor policy net-
work for DSAC facilitates the exploration of potential node
connection information in the three types of IES systems,
leading to enhanced alignment between the model output
and the physical constraints of IES.

Experiments
In this section, we conducted detailed training and testing on
two representative IES datasets to evaluate the effectiveness
of our proposed GNN-based actor Strategy.

Datasets
We evaluate our method on two datasets: Coupled System
(self-made) and Large-scale System.

Coupled System is a 6-6-6 Electric-Heat-Gas IES.The
coupling of diverse energy sources through CHP nodes re-
sults in the formation of a heterogeneous graph system.

Large-scale System is a modified 33-node power system
and a 32-node Bali Island Thermal system (Liu et al. 2016).

Implementation Details
Due to the design constraints and the available data, when
setting up the simulation environment, it is necessary to in-
put the basic information of each node and calculate the
node and edge features using the previously mentioned for-
mulas. The input of the policy network is the current state,
and the output is the actual scheduling output. The actor net-
work consists of 4 layers with the number of neurons in each
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Figure 4: Return Value of Different RL algorithm (left) and DSAC based on GAT and MLP (right).

layer as follows: [128, 64, 32, 32]. The critic network con-
sists of 5 layers with the number of neurons in each layer
as follows: [128, 64, 64, 32, 32]. The experience pool size is
500000. The Adam optimizer is used to automatically adjust
the learning rate within the range of 5× 10−4 ∼ 5× 10−6.

Results and Analysis
Table 1 displays the operational average costs. After observ-
ing the performance of the model method on the two ex-
ample systems, it can be concluded that DSAC outperforms
other alternative reinforcement learning algorithms in terms
of strategy performance, with SAC being the second-best
option. On the other hand, DDPG, due to having a local op-
timal gradient, fails to find the global optimization solution.
Firstly, by comparing the reward values of various policy
network implementation frameworks, it was discovered that
our proposed GAT based for implementing the DSAC policy
network achieved the better performance than MLP based in
two distinct example systems. These results suggest that the
algorithm model based on the GNN effectively utilizes edge
information, resulting in a larger exploration space, faster
training speed, and avoidance of local optima.

Table 1: Reward on Coupled System and Large-scale System

Methods Coupled System Large-scale System
GAT MLP GAT MLP

DSAC 12640 13226 47488 47520
SAC 13920 14268 48042 48646

DDPG / 15582 / 49147

In the Coupled System and Large-scale System dataset,
comparative experiments were conducted on DSAC, SAC
and DDPG algorithms based on the MLP, with the same con-
figuration. The return value during training are shown in left
part of Figure 4. It can be observed that the DSAC algorithm
exhibits advantages in terms of efficient training and excel-
lent convergence compared to DDPG and SAC algorithms.

Under the same network settings, comparative experi-
ments were conducted on the DSAC algorithm based on
both the GAT and MLP. The rewards during the training pro-
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cess are shown in right part of Figure 4. The reward curve
based on the GAT converges after 3000 training iterations.
The reward curve based on the GAT exhibits faster conver-
gence and higher reward values compared to the MLP.

As shown in Figure 5, our method consistently aligns with
the total output and load curve, even when the highest re-
ward value is achieved. Every output adheres to the output
range and ramp constraints, fulfilling the dispatch require-
ments of the IES. Additionally, our model incentivizes a de-
crease in thermal power generation output during the day-
time peak of renewable energy, effectively enhancing the
absorption coefficient of renewable energy without compro-
mising the load. This achievement aligns with the goal of
energy saving and environmentally friendly operation.

Conclusion
We present a DSAC reinforcement learning Optimal dis-
patch algorithm based on the GAT actor strategy. We demon-
strate the training efficiency and effectiveness of this al-
gorithm on two representative datasets of integrated en-
ergy system. The utilization of system topology informa-
tion brings faster convergence speed and a larger exploration
space compared to reinforcement learning algorithms based
on the MLP. This makes it more advantageous in optimal
dispatch of integrated energy systems.
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